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Abstract

This experimental study compares the accuracy of Computer As-
sisted Surgery (CAS) based correction of hind- and midfoot de-
formities, and C-arm based correction. Five specimens of three
different deformity models (Sawbone™) were corrected with
each method and the results were compared. The specimen vi-
sualization during correction was exclusively provided by the C-
arm or CAS screen.

The shape was graded normal in all corrected specimens
(n=15) in the CAS group, and in eight of the specimens in the
C-arm group (Chi2-test, p=0.05). Parameters (t-test utilized):
time entire procedure, CAS, 782 (450-1020) s, C-arm, 410
(210-600) s, p<0.001; fluoroscopy time, CAS, 0 s, C-arm, 11
(8-19) s, p<0.001; measurement differences between correct-
ed specimens and normal specimen model: foot length, CAS,
-1.7+1.9mm, C-arm, -4.1 £3.8 mm, p=0.03; length longitudi-
nal arch, CAS, -0.9+0.9 mm, C-arm, -5.6 4.9 mm, p=0.001;
height longitudinal arch, CAS, -0.1z0.5mm, C-arm,
1.7£4.3 mm, p=0.14; calcaneus inclination, CAS, 0.1 +1.4°, C-
arm, 2.7 £4.8°, p=0.05; calcaneus length, CAS, -0.5 + 0.4 mm, C-
arm, -2.8 £ 1.3 mm, p=0.005; Bohler's angle, CAS, 0.4+1.1°, C-
arm, 4.1 £8.6°, p=0.37.

CAS promises to be a valuable tool for higher accuracy for correc-
tion or reduction in the hind- or midfoot region. Clinical studies
must show if this higher accuracy can be achieved in real opera-
tions also, and if this leads to better clinical results.
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Introduction

The accuracy of the reduction in hind- and midfoot fractures and
fracture-dislocations correlates with the clinical result [1, 3, 8, 17,
19, 35, 41, 49, 50]. The same is true for the accuracy of the correc-
tion of hind- and midfoot deformities [2, 10, 26, 29, 32, 36, 40, 45,
47, 49]. However, an accurate correction or reduction with the
conventional C-arm based procedure is challenging [4, 46, 49].
Computer assisted surgery (CAS) has become a valuable tool for
the correction and reduction in other body regions [5, 9, 11 - 16,
18,20-25, 27,28, 30, 31, 33, 34, 39, 43, 44, 48]. Especially a more
exact reduction could be achieved [5, 7, 11, 20-22, 25, 27, 28, 31,
34, 37, 38, 42, 44]. CAS may also be useful for the correction of
hind- and midfoot deformities and for the reduction of hind-
and midfoot fractures and fractures dislocations, although it has
not been used in the foot region so far [6].

This experimental study compares the handling and accuracy of
CAS based correction of hind- and midfoot deformities in artifi-
cial bone specimens with C-arm based correction. The purpose
of this study is to find out if CAS is more accurate than the con-
ventional C-arm based method, and if the handling is adequate
for clinical use. The aim is then to use CAS for reduction or cor-
rection in the hind- and midfoot.

Methods

Sawbone™ (Pacific Research Laboratories, Vashon, WA, USA) spe-
cimen models “Large Left Foot/Ankle”, “Large Left Foot/Ankle
with Equinus Deformity”, “Large Left Foot/Ankle with Calcaneus
Malunion”, “Large Left Foot/Ankle with Equinovarus Deformity”
were used (Fig.1). A CT scan of each deformity specimen model
(n=3) was performed to enable CAS. The goal of the correction
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Fig. 1

Sawbone™ (Pacific Research Laboratories, Vashon, WA, USA) specimen models “Large Left Foot/Ankle” (a), “Large Left Foot/Ankle with

Equinus Deformity” (b), “Large Left Foot/Ankle with Calcaneus Malunion” (c), “Large Left Foot/Ankle with Equinovarus Deformity” (d).

was to transform the shape of the pathology specimen models
(Fig.1b-d) into the shape of the normal specimen model
(Fig.1a). Two methods were used for the correction, a, conven-
tional C-arm based correction, and, b, CAS (CT based, Surgi-
gate™, Medivision, Oberdorf, Switzerland & Northern Digital
Inc., Waterloo, Ontario, Canada) based correction (Figs. 2 and 3).
Five specimens of each deformity model were corrected with
each method. Standardized osteotomies were performed before
the correction when necessary (in models with equinovarus
[Fig.4] and calcaneus malunion [Fig.5]). The surgeon’s direct
view to the specimens was disabled by drapes (Figs.2 and 3).
During the correction procedure, the visualization of the speci-
men was exclusively provided by the image of the C-arm or the
CAS device (Figs. 2 and 3). Retention was performed with 1.8 mm
titanium K-wires (Fig. 5). The CAS procedure included data trans-
fer of the DICOM (Digital Imaging and Communications in Medi-
cine) data from the CT device to the CAS device. Then, planning of
the correction with the PAO™ software module (Surgigate™,
Medivision, Oberdorf, Switzerland & Northern Digital Inc., Water-
loo, Ontario, Canada) was performed with the imported data.
During this planning procedure, the cuts of the standardized os-

teotomies were also virtually performed with the software, and
the two resulting fragments were considered for the correction
process. Each fragment was then equipped with a marker
(DRB™, Synthes, Bochum, Germany, Medivision, Oberdorf, Swit-
zerland) at the following location: models “Equinus Deformity”
and “Equinovarus Deformity” at tibia shaft and shaft of metatar-
sal I, and model “Calcaneus Malunion” at tuber and anterior pro-
cess of the calcaneus. The markers were fixed with an external
fixation device (Minifixateur™, Synthes, Bochum, Germany) to
two 4.0mm Schanz screws (Synthes, Bochum, Germany) that
were inserted in the specimens at the described positions. A
standard surface mapping of the specimen followed (Surgi-
gate™, Medivision, Oberdorf, Switzerland). Finally, the correc-
tion was performed so that the fragments virtually reached the
position that was specified during the planning procedure.

The following parameters were registered: time needed for entire
procedure and for reduction process, fluoroscopy time, foot
length, length and height of longitudinal arch, calcaneus inclina-
tion, hindfoot angle for all models (n=30) and additionally Boh-
ler’s angle, calcaneus length for the “Calcaneus Malunion” speci-
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Fig.2 Setting of Garm based correction (a). b shows the surgeon’s
view during the procedure.

men models (n=10). The measurements were performed using
standardized landmarks (Fig. 6). The length and height measure-
ments were performed with an electronic gauge (Absolute Digi-
matic™, Mitutoyo Inc. Germany, Neuss, Germany), the hindfoot
angle was measured with a goniometer (Inklinometer™, Zebris,
Tuebingen, Germany), and the Boehler’'s angle was measured
with a ruler (Geodreieck™ gross, Pelikan, Hannover, Germany)
on standard lateral radiographs. The shape of the corrected speci-
mens was graded in normal, nearly normal, abnormal, or severely
abnormal. The parameters of the two correction method groups
(CAS vs. C-arm) were statistically compared (t-, Chi-tests).

According to the specimen measurements, the differences be-
tween the corrected specimen models and the normal specimen
model were also compared.

Results

The shape was graded normal in all specimens (n =15) in the CAS
group, and in eight of the specimens in the C-arm group (other
grades in C-arm group: nearly normal, n=6, abnormal, n=1,
Chi%-test, p=0.05). The time needed for the entire procedure

Fig.3 Setting of CAS based correction (a). b shows the surgeon’s
view during the procedure.

Fig.4 Standardized osteotomy in the “Equinus Deformity” specimen.
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Fig.5 Retention with K-wires after standardized osteotomy and cor-
rection in a “Calcaneus Malunion” specimen.

Fig.6 Landmarks for measurements at normal and corrected speci-
mens. The hindfoot angle and the calcaneus inclination were meas-
ured as described [49].

was longer in the CAS group although the time needed for the
reduction process and the fluoroscopy time were shorter in the
CAS group than in the C-arm group (Table 1). In three cases in
the CAS group, the system crashed down and was restarted
(times for entire procedure in these cases 1000, 1010 and
10205).

Tables1 and 2 indicate the measurements of specimens and
measurement differences between the corrected specimens and
the normal specimen model.

Discussion

In our experimental study, the accuracy of the correction of hind-
and midfoot deformities with CT based CAS was higher than with
the conventional C-arm based method.

When further analyzing the correction in the different pathology
specimen models, the highest differences (lowest “t” values) be-
tween the CAS group and the C-arm group were observed in
“Calcaneus Malunion” specimen model, followed by the “Equi-
nus Deformity” and the “Equinovarus Deformity” specimen
models. In both the “Calcaneus Malunion” and the “Equinus De-
formity” specimens, an osteotomy was necessary for the correc-
tion, and the reduction process was more complex than in the
“Equinovarus Deformity” specimen model. It seems that the ac-
curacy of the CAS based correction is superior to the C-arm based
correction in more difficult corrections. Especially the “Calca-
neus Malunion” specimens required a complex and difficult re-
duction maneuver, similar to a clinical surgical procedure [29].

Table1 Time use, measurements of specimens and measurement
differences between the corrected specimens and the
normal specimen model (mean values and range for
times, and values and standard deviation for other meas-
urements shown). Bohler’s angle and calcaneus length
were only corrected and assessed in the “Calcaneus Mal-
union” specimens (n =5, CAS and Garm each).

Parameter CAS (n=15) C-arm (n=15) t-test

Times

Time entire procedure 782 (450-1020) s 410 (210-600) s p<0.001

Time reduction process 35 (28-54) s 98 (43-240)s p=0.02

Fluoroscopy time 0s 11(8-19) s p<0.001

Measurements of normal specimen model

Foot length 262.0mm

Length longitudinal arch 146.8 mm

Height longitudinal arch 24.2mm

Calcaneus inclination 22.5¢

Calcaneus length 79.7mm

Bohler's angle 48°

Measurements of corrected specimens (all deformity models)

Foot length 263.7+19mm 266.1+3.8mm p=0.03

Length longitudinal arch 147.7+09mm 152.4:4.9mm p=0.001

Height longitudinal arch 24.2 + 0.5 mm 225+43mm p=0.14

Calcaneus inclination 22.4+1.4° 19.8+4.8° p=0.05

Calcaneus length 80.2 + 0.4 mm 82.6+1.3mm p=0.005

Bohler's angle 47.6+1.1° 43.9+8.6° p=0.37

Measurements differences between corrected and normal specimens

(all deformity models)

Foot length -1.7+1.9mm -4.1+3.8mm p=0.03

Length longitudinal arch -0.9+0.9mm -5.6 + 4.9 mm p=0.001

Height longitudinal arch -0.1+0.5mm 1.7+43mm p=0.14

Calcaneus inclination 0.1+1.4° 2.7+4.8° p=0.05

Calcaneus length -0.5+0.4mm -2.8+1.3mm p=0.005

Béhler’s angle 04+1.1° 4.1+£8.6° p=0.37

Table2 Significances (p-values of t-test) of differences between
CAS and Garm groups of measurement differences be-
tween corrected specimens and normal specimen of dif-
ferent pathology models

Parameter Calcaneus  Equinus Equinovarus

malunion  deformity deformity

p-values of t-test between CAS (n=5) and Garm (n=5)

Time entire procedure, CAS > Garm <0.001 0.005 <0.001
Time reduction process, CAS < Garm 0.01 0.05 0.15
Fluoroscopy time, CAS < Garm <0.001 0.002 0.003
Measurements differences between corrected and normal specimens

Foot length, CAS < Garm 0.03 0.02 0.81
Length longitudinal arch, CAS<Garm  0.001 0.04 0.25
Height longitudinal arch, CAS< Garm  <0.001 0.7 0.82
Calcaneus inclination, CAS < Garm 0.38 0.55 0.21
Calcaneus length, CAS < Garm 0.004

Béhler’s angle, CAS < Garm 0005  |Notcorrected
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With CAS, the reduction process of the “Calcaneus Malunion”
specimens was not found to be more difficult than for example
in the “Equinovarus Deformity” specimens. In contrast, the C-
arm based reduction of the “Equinovarus Deformity” speci-
mens was much easier than the C-arm based reduction of the
“Calcaneus Malunion” specimens. This is reflected by the short-
er reduction process times in the “Equinovarus Deformity” spe-
cimens than in the “Calcaneus Malunion” specimens in the C-
arm group (data not shown). The times needed for the reduc-
tion process with CAS were similar in all deformity specimen
models (data not shown), and were significantly shorter than
in the C-arm group. Furthermore, the fluoroscopy times were
shorter in the CAS group than in the C-arm group because no
intraoperative fluoroscopy was needed for CAS in comparison
to 11 seconds fluoroscopy in average in the C-arm group. How-
ever, the time of the entire correction procedure needed for the
CAS method was almost twice the time needed for the C-arm
method.

The reasons for the longer time needed with CAS are the require-
ments of the data transfer of the DICOM-data of the preoperative
CT scan to the CAS device and especially the very time consum-
ing matching process during the registration procedure. The
main problems with the matching are based on the difficult
bony architecture of the foot with 28 bones and more than
30 joints. Due to these anatomic conditions, the foot does not re-
main in the same position between the preoperative CT and the
registration. This makes the registration in the foot much more
difficult than in other body regions like the spine or the pelvis
with less and bigger bones [6, 13, 14, 20, 28, 31]. In the clinical
application of CAS in the foot, the problems with the registra-
tion will still increase, although the soft tissue coverage is favor-
ably thin.

When the registration was finally finished, the CT based CAS as
used in our study was more accurate and even easier and faster
than the conventional C-arm based method, but the problems
with the registration will prevent broad clinical use. Fortunate-
ly, at the time this experimental study was planned and per-
formed, two novel CAS methods without registration were intro-
duced, the C-arm based CAS and the ISO-3-D™ (Siemens AG,
Germany) based CAS. The ISO-C-3D™ js a motorized C-arm that
provides fluoroscopic images during a 190 degrees orbital rota-
tion computing a 119 mm data cube. From these 3D data sets
multiplanar reconstructions were obtained. In both the C-arm
and ISO-3-D™ based CAS, the DICOM-data are registered intra-
operatively with the C-arm or ISO-3-D™ which are connected
with the CAS device. The markers are fixed to the bones before,
which makes any registration unnecessary. The C-arm based
CAS provides two-dimensional images, and the ISO-3-D™ based
CAS even three dimensional images comparable to a CT based
CAS. The C-arm based CAS and the ISO-3-D™ based CAS have
been used in our institution experimentally and the C-arm
based CAS was clinically used for the positioning of drill holes in
ankle and/or subtalar arthrodeses (unpublished work). Both
methods combine the accuracy of the CT based CAS as shown in
this study without the stumbling block registration.

Another problem with the CAS device that was used in this study,
and with other CAS devices is the software that is currently un-

suitable for the planning of bony corrections or reductions. There
is better planning software available on the market, and a modi-
fication of the software tools for planning in CAS devices seems
to be a minor technical problem.

Another important issue are the device costs, that are much
higher for the CAS (approx. 500000 Euro) than for the C-arm
alone (approx. 50000 Euro). The device costs will even increase
if C-arm based CAS (plus approx. 60000 Euro for modified C-
arm) or ISO-3-D™ based CAS (plus approx. 250000 Euro for
ISO-3-D™ ) are used. These higher costs will only be acceptable
if the higher accuracy of CAS leads to better clinical results as
with C-arm based methods.

In conclusion, CAS promises to be a valuable tool for higher accu-
racy for the correction of hind- and midfoot deformities and for
the reduction in hind- or midfoot fractures and fracture-disloca-
tions. Clinical studies must show if this higher accuracy can be
achieved in real operations also, and if this leads to better clini-
cal results. The clinical use of the CT-based CAS in the foot is
complicated due to the difficult registration. Therefore, CAS
methods without registration like C-arm based CAS and ISO-3-
D™ based CAS, will be especially interesting for the foot region.
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